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1. Introduction

Early growth response gene-1 (EGR1), also known as 
NGFI-A, krox-24, ZIF268 and TIS8, is an immediate 
early gene which encodes a Cys2-His2-type zinc finger 
transcription factor widely expressed in eukaryotic 
cells from yeast to humans (1-3). It is one of the largest 
studies of tumor-specific proteins, which are located 
in the 5q31 region (4,5). It has an important role in 
controlling synaptic plasticity, wound repair, female 
reproductive capacity, inflammation, growth control, 
differentiation, apoptosis and tumor progression (6). 
Experiments have also proved that acute myeloid 
leukemia and myelodysplastic syndromes are associated 
with heterozygous loss of EGR1 (7). Here, we focus on 
the relationship of EGR1 with acute myeloid leukemia.

2. The summarization of EGR1's discovery and 
function

EGR1 was first discovered in the mid-1980s (8). The 
EGR family includes EGR1, EGR2, EGR3, EGR4 
four related members, that can quickly and briefly 
be up-regulated through a variety of external stimuli, 
including activation, proliferation and differentiation 
signals, tissue damage and apoptosis signals (9). EGR1, 
EGR2, EGR3 and EGR4 share a highly conserved 
DNA binding domain, composed of three zinc finger 
motifs that together bind to a 9-bp G/C-rich consensus 
sequence (GCGGGGGCG) (10). It has been used 
extensively as a model system for detecting how 
TFIIIA-like zinc fingers recognize DNA, and how 
it has served as a basis for engineering some types 
of artificial DNA-binding proteins (11). EGRs are 
involved in regulating the immune response by means 
of the induction of differentiation of lymphocyte 
precursors, and activation of B and T cells (12). EGR1 
binds to DNA G/C-rich sequences through 3 zinc-
finger motifs in its carboxyl terminal and regulates gene 
transcription through co-operation with other activating 
or repressing factors (13). It may be divided into three 
zones. The N-terminal portion (amino acids 1-331) is 
rich in proline (14.2%) and serine (16%) and has 7.9% 
alanine and 7.9%, threonine. The C-terminal region 
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(residues 417-533) also contains a very high proportion 
of proline and serine (15.4% and 26.5%, respectively) 
as well as 10.3% alanine and 11.1% threonine (14).

3. Biological function and role in tumors

The EGR1 gene encodes a zinc finger protein and its 
expression is modulated in diverse biological systems 
with kinetics resembling those of c-fos (14). EGR1 
together with c-fos is crucial for normal myeloid cell 
differentiation through transcriptional regulation (15). 
Gene expression analysis revealed that EGR1 and c-fos 
were down-regulated in hematopoietic primitive cells 
(16). C-fos and EGR1 represent the key transcription 
factors that are differentially activated by macrophage 
colony-stimulating factor (M-CSF) and granulocyte 
colony-stimulating factor (G-CSF) to resolve neutrophil 
versus monocyte cell fate (17). However, EGR1 has 
more of an advantage than c-fos because of different 
structure, which increases its expression and decreases 
sensitivity to stimulation (18). EGR1 can regulate cell 
growth, differentiation, growth inhibition, and apoptosis 
in various kinds of cells (19). Many factors can regulate 
expression of EGR1, including miR-424, miR-146a, miR-
181a, E2h2, wilms tumor suppressor 1 (WT1), and Iron 
(9,20-25). It's also reported in the literature that EGR1 can 
be regulated by erythropoietin (EPO) (26,27). MiR675 
upregulates long noncoding RNA H19 through activating 
EGR1 in human liver cancer (28). More importantly, 
EGR1 can regulate some signaling such as p53, 
transforming growth factor beta 1 (TGFβ1), phosphatase 
and tensin homolog deleted on chromosome ten (PTEN), 
Fibronectin, and enterovirus 71 (EV71) (29-32). The 
promoter of the human TGFβ1, p53, and the fibronectin 
gene contains at least two EGR1-binding sites, both 
of which can bind EGR1 to activate transcription. The 
proximal promoter of PTEN is GC rich and contains 
one functional EGR1-binding site (29). Moreover, it 
plays important roles in decidualization, megakaryocyte 
differentiation, apoptosis, tendon development, lung 
injury, liver injury, kidney diseases, chronic obstructive 
pulmonary disease (COPD), angiogenesis, fibrosis, 
atherosclerosis, cell cycle and other biological functions 
(33-52). EGR1 has a critical role in promoting autophagy 
and apoptosis in response to cigarette smoke exposure 
in vitro and in vivo (53). EGR1 controls metabolism, 
especially its suppression of lipolysis and promotes fat 
accumulation by inhibiting the expression of triglyceride 
lipase (54). Although the expression of EGR1 is low 
in most tissues, it is high in islets. EGR1 regulates 
insulin gene expression by up-regulating Pdx1 (55). 
EGR1 gene expression may contribute to the decrease 
of B-cell proliferation and the consequent cell failure 
observed in the later stages of type 2 diabetes (56). The 
increase of EGR1 expression in the brain is associated 
with formation of emotional memory and schizophrenia 
(57). It has been proved that EGR1 mutant mice had no 

changes in short-term memory, but long-term memory 
was severely damaged (58). Ischemia-induced EGR1 
expression may exaggerate brain injury by reducing 
brain-derived neurotrophic factor (BDNF) expression 
(59). EGR1 exhibited a biphasic expression behavior. It 
was previously described to be down-regulated in many 
breast carcinoma tissues while it was upregulated in 
highly invasive inflammatory breast carcinoma. It started 
to be upregulated 4 h after SNAI1 induction, and was 
repressed after 24 h (6). Interestingly, in prostate cancer, 
kidney cancer and stomach cancer EGR1 stimulates 
the growth of tumor cells, and is associated with poor 
prognosis. In contrast, EGR1 is a tumor suppressor in 
fibrosarcoma, glioblastoma, melanoma, esophageal 
cancer, lung cancer and breast cancer (60-64).

4. Pathogenesis mechanism of AML by EGR1

In the absence of EGR1, a significant increase in cell 
cycling occurs in hematopoietic stem cells (HSCs), 
culminating in an increased number of HSCs and an 
increased frequency of primary reconstitution under 
limiting dilution conditions. Most interestingly, loss 
of EGR1 causes efficient mobilization of HSCs out 
of their niches (65). Abnormalities of chromosome 5 
are common aberrations in acute myeloid leukemia 
(AML), with del(5q) the most frequent (66,67). There 
is also literature, which shows that EGR-1 was related 
to recurrent disease following high-dose chemotherapy 
(68). Nevertheless, EGR1 haploinsufficiency alone 
in vivo  does not lead to expansion of HSCs or 
abnormalities in adult hematopoiesis. It has been 
proven that loss of a single allele of more than one gene 
on 5q contributes to the pathogenesis of AML (69-71). 
A number of genes and several microRNAs (miRNAs) 
located on 5q, including miRNA-145, miRNA-146a, 
the ribosomal protein S14 (RPS14), the cell division 
cycle 25 (CDC25), the adenomatous polyposis coli 
gene (APC) have been implicated in the development 
of myeloid disorders caused by a gene dosage effect 
(72,73). (Figure 1) EGR1 may play a functional role 
in the pathogenesis of AML in patients with del(5q) 
(74,75). The loss of EGR1 or inactivation increases risk 
of AML (76). Using locus-specific probes, a deletion 
of the EGR1 locus 5q31, 7q31 and the TP53 gene was 
observed in 103 (82%), in 57 (46%) and in 66 (53%) 
patients respectively. Thirty patients (24%) showed a 
deletion of all three loci, and in only 13 cases (10%), 
5q31, 7q31, or 17p13 was not deleted. An EGR1 
deletion alone was observed in 19 cases (15%) in only 
five and four AMLs respectively (77). In an attempt to 
define the loss of the 5q31.1 region, fluorescence in situ 
hybridization analysis was performed in HL-60 cells, 
which spanned the EGR1 and IL9 gene interval, which 
was previously shown to be a critical region of loss 
in AML (78). Loss of the EGR1 gene with deletions 
of 7q31 or TP53 alone played a role in at least two 
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signaling molecules of genipin-induced apoptosis in 
gastric cancer cells (88). Another article revealed that 
the down-regulation of EGR1-p21 expression provides 
a mechanism for improved hematopoiesis (89). 
Histone deacetylase (HDAC) inhibitors can reactivate 
EGR1 in various cell types, leading to decreased 
cell proliferation and increased cell apoptosis (90). 
HDAC recruitment may participate in the repressive 
mechanism that EGR1 directly represses myocyte 
enhancer factor 2 (MEF2) activity for treatment of 
cardiac disease (91). Experimental evidence has 
demonstrated that EGR1 diminished the aggressiveness 
of M1myc leukemia and abrogated the leukemic 
potential of IL-6-treated M1myc cells. Altered EGR1 
expression can work together with deregulated c-Myc 
in exacerbating the leukemic phenotype (92). It is also 
reported that EGR-1 plays an indispensable role in the 
regulation of platycodon D-induced cell death and the 
1, 25D3-induced cessation of cell proliferation, which 
is characteristic of the terminal stage of differentiation 
of these cells (93,94). EGR1 and WT1 are structurally 
related transcription factors and bound to quite similar 
DNA sequences (95). This gives us a revelation that 
down-regulating the expression of WT1 can up-
regulate the expression of EGR1. In this way, inhibition 
of proliferation and differentiation of leukemia cells 
is no longer a problem. EGR1 is also important for 
development of the macrophage lineage (96). It is 
interesting to note that EGR-1 abrogates the block in 
M1 terminal differentiation imparted by oncogenic 
c-Myc or E2F-1, suppressing their leukemia promoting 
function in nude mice (97). A novel mechanism 
of thalidomide in the treatment of leukemia is that 
thalidomide could suppress leukemia cell invasion and 
migration by upregulation of EGR-1 (98). Also that 
paeoniflorin (PF) playing a role in human leukemia 
U937 cells is based on the regulation of EGR1 (99). 
LY294002 (LY29) is a commonly used pharmacologic 
inhibitor of phosphatidylinositol 3-kinase (PI3 K) and 
has shown an antitumorigenic effect. It could suppress 
leukemia cell invasion and migration at least in part 
through up-regulation of EGR-1, independent of its 
PI3 K-Akt inhibitory activity (100). In summary, we 
believe that EGR is likely to be a target for treatment 
of AML.
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aspects. First, EGR1 directly controls the expression 
of fibronectin (FN1) through pathways that involve 
GFB1 and plasminogen activator-1 (PAI1). Thus, FN1 
and PAI1 act together to inhibit the growth of cancer 
cells. Second, EGR1 is required for p53-dependent 
apoptosis through the mediation of retinoblastoma (79). 
To examine the role of EGR1 in hematopoiesis, EGR1+/- 
and EGR1-/- mice was characterized, and found that 
EGR1+/- and EGR1-/- mice develop T-cell lymphoma or 
a myeloproliferative disorder (MPD) at an increased 
rate and a reduced latency over that observed in wild-
type littermates. EGR1+/- and EGR1-/- mice develop 
T-cell lymphoma or MPD at the same rate and latency, 
suggesting that loss of a single allele of EGR1 is 
sufficient for disease predisposition. This is consistent 
with observations in patients with AML characterized 
by abnormalities of chromosome 5, in that only 1 EGR1 
allele is affected (80). Interestingly, EGR1 is regulated 
by multiple factors in AML. The cyclin-dependent 
kinases (CDK) CDK6 and Src family kinases (SFKs) 
inhibit expression of EGR1 (81,82). On the contrary, 
Llgl1 (lethal giant larvae homolog 1) and PMA (Phorbol 
12-myristate 13-acetate) contribute to the differentiation 
of hematopoietic stem cells (83,84). Andra Schaefer et 
al. found that the expression of EGR-1 had a regulatory 
role in Epo signal transduction in leukemia cells (85).

5. The possibility of EGR1 as therapy target of 
patients with AML

The primary structure of the EGR1 protein suggests 
that it is a DNA-binding protein with transcriptional 
regulatory activity, and it may function as a tumor 
suppressor locus whose absence or loss of function 
could lead to deregulated cell growth (86). This gives 
us an inclination that EGR1 or EGR1 target gene is 
useful for treatment of blood malignant tumors (87). 
One study mentioned that EGR1 and p21 are key 

Figure 1. E2h2, miR181a, PTEN, P53, WT1, EPO and 
EGR1 can regulate each other. The cooperation of EGR1, 
APC, RPS14, CDC25, miR145, miR146a, TP53 and NU98 
may lead to the formation of AML.
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