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1. Introduction

Fibrodysplasia ossificans progressive (FOP), also 
known as myositis ossificans (1), is a rare autosomal 
dominant disorder with an incidence of one in two 
million births with no sexual, racial, or regional 
predisposition (2). Most patients are scattered around 
the world except in instances of familial inheritance (3). 
The earliest reports of FOP by Patin (1692) and Freke 
(1739) describe its symptoms (4). Later, Stonham, 
Burton-Fanning, and other physicians reported patients 
of different genders, ages, and even entire families with 
FOP and their phenotypes (5).
 Abnormal ossification of the joints and soft tissues 
such as skeletal muscles, tendons, and ligaments (without 
myocardium and smooth muscle) and congenital 
hallux valgus are two typical symptoms of FOP (6). 

Heterotopic ossification (HO) is often associated with 
disability, such as skeletal deformities (trunk, limb, and 
facial deformity), chronic pain, growth defects, and 
stiffness. FOP seriously affects the quality of life and the 
mental health of patients. The average life expectancy 
of patients with FOP is no more than 40 years (7). The 
specific pathogenesis of FOP is not yet clear, and the 
early phenotype of the disease is easily confused with 
other diseases, including tumors, fibromas, and bursitis, 
resulting in its misdiagnosis (8). Moreover, there is no 
effective treatment for the disease (9).
 Here, epidemiological studies on FOP and some 
common mutations are summarized. Clinically treating 
the condition is difficult, but diagnosis and treatment 
of the conditions are making progress. Moreover, 
experimental models are being used to identify the 
mechanism of onset of FOP. Greater understanding of 
the prevalence and symptoms of FOP would facilitate a 
definitive diagnosis and identify effective precautionary 
measures. Every step would help to prolong the life-span 
and improve the quality of life for patients.

2. Prevalence of FOP

FOP is an extremely rare, autosomal dominant disease 
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with a prevalence of 1/2,000,000 (2). Ninety-five 
percent of patients manifest HO before the age of 15, 
and the latest report of the oldest patient with HO 
involves a patient who was 56 years of age (10,11). 
According to the CEMARA and PMSI databases, the 
average age of patients with FOP was 25.5 years, the 
average age of onset was 7.1 years, and the average age 
at diagnosis was 10.2 years (11).
 Statistics for Europe indicate that 30 cases have been 
confirmed in the UK among about 49 million residents, 
with a prevalence of 0.61 per million. Spain is estimated 
to have an incidence of 0.36 per million (12), and French 
data indicate a prevalence of 1.36 per million. These 
figures are roughly similar to the international prevalence 
of the condition (11).
 At present, most patients reported are in the United 
States, accounting for about 25.6% of all registered 
patients. This is followed by China, which accounts for 
about 10.8% of registered patients. Patients with FOP in 
Brazil account for about 8.4%. Compared to European 
and American patients, Asian patients are younger (3). 
Despite the extremely low incidence of FOP, there are 
still a large number of patients with FOP in China due to 
its huge population. Although definite figures for China 
are still unclear, the prevalence of FOP can be used to 
estimate the number of patients. Based on the incidence 
of FOP, there are at least 650 patients with FOP in China 
(7). For various reasons such as the level of medical 
research into the condition, however, only about 70 cases 
are reported, accounting for no more than 12% of all 
such patients in China. Understanding of the symptoms 
and mutations of FOP needs to be increased and the 
condition needs to be better diagnosed.

3. Mutations and diagnosis

The types of mutations of FOP in China are the same 

as those in other countries and regions (7). According 
to that study, 92% patients have the "classic" clinical 
presentation of FOP with a mutation of the ACVR1/
ALK2 gene (R260H,c.617G>A), while the remaining 
8% have atypical symptoms with mutations at other 
sites of ACVR1/ALK2 or other bases of R260H. 
 So far, 13 missense mutations and a 3-base deletion 
mutation have been found in FOP, and the detailed 
types and phenotypes of common mutations are shown 
in Table 1 (2,7,10,13,14).
 The "classic" clinical presentation of FOP with a 
mutation of the ACVR1/ALK2 gene (R260H, c.617G>A) 
induces structural changes in the GS domain. Eighty 
percent of patients with this mutation may have a 
congenital big toe (hallux valgus deformity), and some 
may exhibit soft tissue swelling leading to the formation 
of abnormal bone in the first decade of life (15). More 
than 90% of "classic" patients have a tumor in the tibia 
and more than 80% have a vertebral deformity (16). 
However, 1.5% of patients with this mutation also have 
a thumb deformity just like those with G356D (G328 
R/W/E) mutations, and some patients with R260H 
will have cataracts, delayed growth, or other atypical 
symptoms (14).
 In the early stages, 80% of patients with FOP often 
only have an obvious phenotype-malformations of 
the great toes - but trauma and infection may lead to 
abnormal bone formation from soft tissue swelling 
(8). Trauma, surgery, intramuscular injections, and 
immune injections cause swelling of soft tissue, and the 
occurrence of flare-ups is believed to signal the onset 
of HO (17). Inflammation of soft tissue can gradually 
infect skeletal muscles, tendons, ligaments, fascia, 
and aponeuroses, causing abnormal bone formation in 
these areas, and abnormal bone formation ultimately 
affects the patient's ability to move as well as the 
patient's lifespan. Though bone formation is episodic, 
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Table 1. Common mutations of FOP

Codon

R206H

Q207E

R202I

G325A

G328W
G328E
G328R

G356D

R258S
R258G

R375P

Nucleotide 

605G>T
617G>A

c.619C>G

605G>T

974G>C

c.982G>A
c.982G>T
c.983G>A

1067G>A

774G>C
774G>T

c.1124G>C
FOP, fibrodysplasia ossificans progressiva; GS, glycine-serine-rich domain; HO, heterotopic ossification; PK, protein kinase domain.

Domain

GS

GS

GS

PK

PK

PK

PK

PK

Features

i) Characteristic malformations of great toe, ii) HO, iii) Tibialosteochondromas, iv) Spine 
malformations, v)Broad femoral necks

i) Characteristic malformations of great toe, ii)HO, iii) Tibialosteochondromas, iv) Spine 
malformations, v) Broad femoral necks

i) HO, ii)One short great toe

i) Characteristic malformations of great toe, ii) Late-onset HO

i) HO, ii) Short broad femoral necks, iii) Thumb malformations

i) HO, ii) Spine malformations, iii) Medial tibialosteochondromas

i) HO, ii) Cognitive impairment, iii) Diffuse scalp hair thinning

i) HO, ii) Normal or minimal changes in great toes
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X-rays can reveal abnormal osteogenesis. FOP cannot be 
diagnosed prenatally (22).
 Although there is no effective treatment for FOP, 
prompt diagnosis can allow disease progression to 
be delayed, because patient can avoid intramuscular 
injections, tooth modifications which can cause wound 
(23,24,25). Prevention of trauma and infection is crucial 
before flare-ups occur (26). Patients should not enter 
dangerous areas or participate in strenuous activities. 
Living arrangements need to be improved and protective 
devices such as helmets need to be worn. Special 
attention should be paid to avoiding surgical procedures 
because trauma resulting from surgery can cause massive 
HO (11).

4. Existing and potential treatments

Patients with FOP are generally normal except for 
congenital great toe deformities in infancy. Fifty percent 
of flare-ups are caused by trauma, viral infection, 
intramuscular injections, muscle strain, and excessive 
fatigue in the first decade, resulting in swelling of the 
soft tissue and abnormal ossification of the muscles 
and ligaments (20,25). There is no effective treatment 
for FOP, but some drugs can be used to relieve initial 
symptoms.
 When flare-ups begin, a brief 4-day course of 
high-dose corticosteroids such as prednisone can be 
used to relieve inflammation and tissue edema, but 
corticosteroids only can be used to relieve inflammation 
in areas such as the mandibular joint (27). The frequent 
use of corticosteroids to treat swelling in the trunk 
and neck is not recommended due to the difficulty in 
assessing the onset of flare-ups (8).
 When corticosteroids are discontinued, mast cell 
inhibitors, aminobisphosphonates, non-steroidal anti-
inflammatory drugs, and COX-2 inhibitors could be 
used to treat later flare-ups. A small dose of a muscle 
relaxant may help to relieve muscle spasms (27,28). 
Non-steroidal anti-inflammatory drugs inhibit the 
synthesis of prostaglandin, which induces resistant HO 
in animal models. Clinically, steroids, non-steroids, 
and anti-inflammatory drugs can mitigate inflammation 
and pain, but they cannot reduce the frequency of HO. 
Aminobisphosphonates affect the function and survival 
of osteoclasts, thus influencing bone formation, but 
the efficacy and safety of these drugs have not been 
established (29). 
 At present, effective drugs are a key area of study. 
The ACVR1/ALK2 mutation causes partial deletion 
of the ACVR1/ALK2 inhibitory protein FKBP12, so 
ACVR1/ALK2 remains weakly activated in the absence 
of stimulation by BMP signals, causing HO (30). 
Therefore, one potential strategy would be to inhibit 
the activity of pathways related to the ACVR1/ALK2 
gene to inhibit abnormal bone formation (31). As an 
example, LDN-193189, optimized by dorsomorphin, 

disability is cumulative (17). Loss of mobility or even 
chewing ability can be caused by severe osteogenesis 
abnormalities, so most patients have to rely on 
wheelchairs to move around by the third decade of life 
(18). Death due to FOP is caused by the complications 
of thoracic insufficiency syndrome. Deformities of 
the joints, limbs, and face also place the patient under 
enormous psychological strain.
 Since there is no effective treatment for FOP, 
diagnosis of the disease needs to be improved and 
prevention action needs to be taken to delay its 
progression. Early diagnosis has become the key to 
extending the life of patients with FOP. However, 90% 
of patients with FOP are misdiagnosed in the early stages 
of the disease. Since there are no diagnostic indicators 
of FOP, doctors and patients lack understanding of FOP 
and the early symptoms are not taken seriously, causing 
a delay in treatment. In specific terms, about 90% of 
patients with FOP worldwide have been misdiagnosed, 
and 67% of patients have received incorrect or 
unnecessary treatment. Treatment or diagnostic 
techniques such as removing excess bone and a biopsy 
can cause iatrogenic injury that accelerate HO (13). 
Improper treatment has caused irreparable damage or 
permanent disability to more than 50% of patients (17). 
Differentiating FOP from tumors, fibromas, and bursitis 
is essential to diagnosis. A typical mutation of R206H, 
which accounts for the highest proportion of patients 
overall, causes flare-ups in the first decades of life (16). 
Therefore, pediatricians and parents must be alert to 
congenital deformities of the great toes and soft tissue 
swelling in children consider the likelihood of FOP (19).
 Before HO develops, routine physical examinations, 
including a radiographic skeletal survey, will not 
provide sufficient evidence to definitively diagnose 
FOP. The most authoritative indicator is the detection of 
the ACVR1/ALK2 gene. Kaplan et al. obtained genomic 
DNA from 7 children suspected of having FOP after 
venipuncture (19). A genetic analysis confirmed that 
the 7 patients had an ACVR1/ALK2 (R206H, c.617G>A) 
mutation. Single gene detection allows rapid and 
accurate diagnosis of patients with FOP before the 
onset of HO. Without a clear goal or obvious disease 
phenotype, whole genome sequencing or whole-exome 
sequencing (WES) is an effective means of reducing 
the trauma caused by a biopsy, improving the accuracy 
of diagnosis, avoiding a tedious physical examination, 
and it also equally helps to identify other rare diseases 
like FOP (20,21).
 After HO develops, progressive extra-skeletal 
ossifications become typical deformities of FOP. In 
addition to clinical manifestations, imaging analysis 
(CT and MRI) is an important method of diagnosis. CT 
clearly reveals typical HO (8). MRI is also an important 
tool for diagnosis of FOP because it can reveal pre-
osseous lesions, usually appearing as soft tissue swelling, 
and skeletal malformations. After HO occurs, plain 
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is a ALK2 protein inhibitor that repairs and maintains 
abnormal FOP-iPSc cells in vitro, and there is evidence 
of the therapeutic value of this drug in treating FOP (32). 
The other strategy would be to inhibit inflammation or 
to inhibit of osteoblastic progenitor cell activity (the 
RAR gamma agonist palovarotene) (33). Hindering the 
microenvironment for HO is a possible strategy. As an 
example, imatinib has a positive effect on multiple FOP 
related targets, and a clinical trial has demonstrated that it 
inhibits ACVR1/ALK2 signaling, inflammatory triggers, 
pre-osseous fibro proliferative cells, and stimulatory mast 
cells. Kaplan et al. proved that imatinib significantly 
reduced the incidence of flare-ups (9).
 New drug targets have been discovered with the 
increasing understanding of the pathogenesis of FOP. 
Many drugs, such as imatinib, are in clinical trials, and 
appropriate drugs may be available in the near future 
because of better understanding of the mechanism of 
onset of FOP.

5. Cells models of FOP

Studies on FOP are mainly focused on the specific 
mechanism of onset of HO and drug screening 
(8,12,34). The nature of FOP is particularly problematic 
because of the difficulty in acquiring living tissue to 
study the mechanisms of the disease. Minor trauma 
or an infection may cause tissue swelling followed by 
development of HO in the ligaments and connective 
tissue (15). At present, the main models used to study 
the pathogenesis of FOP are mouse cells, knockout 
mice, and induced pluripotent stem cells (25).
 The cells most often used to model FOP are mouse 
cells (35). When studying the abnormal expression 
mechanism of pathogenic ACVR1/ALK2, different 
researchers have chosen different cell models, and 
their results differ. Vectors containing mutated ACVR1/
ALK2 have been transfected into cells such as U-2OS 
(36), MC3T3-E1 (37), and C2C12 (38), but levels 
of Smad1/5/8 expression differed. In addition to the 
transfection process (expression and transfection 
efficiency), the cell type may account for differences 
in expression (39,40). Patients FOP have endochondral 
ossification, so many studies have focused on cells 
related to chondrocytes. The differentiation of mouse 
embryonic fibroblasts into chondrocytes demonstrates 

that ACVR1/ALK2 is a key factor in chondrogenesis. 
Embryonic fibroblasts, the origin of mouse mesenchymal 
cells, can be obtained from the head and limbs of mouse 
embryos. A rat chondrocyte cell line (ATDC5) expressing 
BMP-responsive luciferase has been used in high 
throughput drug screening. The cells can differentiate 
into mature chondrocytes when cultured in differentiation 
medium, and drugs that down-regulate the ACVR1/ALK2 
gene could be distinguished based on the intensity of the 
fluorescence signal, providing a basic model for drug 
screening and retesting of existing drugs (25).
 ACVR1/ALK2 gene knockout mice are commonly 
used (41). Most knockout mice have the FOP phenotype. 
Murine cells and mice as models of FOP have indeed 
made great progress, but mice and murine cells cannot 
meet more detailed experimental needs. There are certain 
interspecies differences between mice and humans. For 
example, some knockout mice die during the perinatal 
period, so more appropriate models are urgently needed 
(42). Dermal fibroblasts obtained from patients with 
FOP are more suitable. A 3-mm thick piece of skin is 
removed from a patient with FOP and then macerated 
and cultured. Mineralization is then induced to study the 
role of TGF in osteogenic differentiation. Since trauma 
can easy trigger flare-ups in patients with FOP, sampling 
must be performed very carefully and skillfully to avoid 
trauma or infection (43). 
 In 2006, Takahashiand Yamanaka induced somatic 
cell reprogramming with a recombinant factor, thus 
obtaining induced pluripotent stem cells (iPSc) (44). This 
new technique has opened up new avenues and methods 
of studying the biological characteristics of many 
diseases (45). iPSc have several advantages. First, iPSc 
have a potent capacity for self-renewal and grow rapidly. 
In vitro experiments have been able to provide large 
quantities of needed cells, avoiding the tedious process 
of obtaining primary cells. Second, their potential for 
differentiation enables iPSc to differentiate into specific 
cells, providing cells at different stages of differentiation 
(46). iPSc can be obtained from somatic cells without 
causing ethical issues. With individual specificity, 
iPSc can carry disease-related pathogenic genes and 
an individual's specific genetic background (47). 
The induction of iPSc in vitro rapidly and effectively 
indicates the phenotype of disease in an individual 
specific background. A variety of somatic cells can be 

Table 2. Induced pluripotent stem cell models of FOP

Sample

4 patients 
2 patients
purchased 
2 patients
5 patients
5 patients
4 patients

Types

R206H and G356D
R206H
R206H
R206H
R206H
R260H
R206H

FOP, fibrodysplasia ossificans progressiva.

Somatic cell

Skin fibroblasts
Urine Cell
Human dermal fibroblasts
Urine 
Primary human dermal fibroblasts
Primary human dermal fibroblasts
Fibroblasts

Vector

Sendai virus
Episomal vectors
Episomal vectors
Sendai virus vector
Retroviruses and integration-free episomal plasmid
Retroviruses and integration-free episomal plasmid
Retrovirus or episomal plasmids

Ref.

(32)
(48)
(49)
(50)
(51)
(40,52,53)
(54)
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reprogrammed into stem cells, including skin fibroblasts 
(32) and kidney epithelial cells (48), and Sendai virus 
and non-integration vector can be used as programming 
tools (49).
 i P S c  h a v e  b e e n  o b t a i n e d  b y  s o m a t i c a l l y 
reprogramming cells from patients with FOP. This 
provides a new, more accurate and appropriate cell model 
for the study of the pathogenesis of FOP. Hamasaki 
et al. used incompletely reprogrammed FOP-iPSc as 
an alternative tool to screen new drugs (32). Hino et 
al. induced chondrogenic differentiation of MSC cells 
from FOP-iPSc and concluded that BMP signals were 
activated by actinA (50). Relevant studies are listed in 
Table 2.
 Surgery is not generally appropriate for patients with 
FOP, so future studies should focus on drug screening 
and noninvasive treatment. Intramuscular injections 
remain a potential risk, so safer dosing schedules should 
be considered. FOP-iPSc, a strong operational and 
theoretical basis for elucidation of the pathogenesis of 
FOP and drug screening, should be the main in vitro 
model used in future experiments. Effective therapies 
and drugs to treat FOP should be available in the near 
future.
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