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Alzheimer's disease pathology in Nasu-Hakola disease brains
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1. Introduction

Nasu-Hakola disease (NHD), also designated polycystic 
lipomembranous osteodysplasia with sclerosing 
leukoencephalopathy (PLOSL; OMIM 221770), is 
a rare autosomal recessive disorder, characterized 
by progressive presenile dementia and formation of 
multifocal bone cysts, caused by genetic mutations of 
either triggering receptor expressed on myeloid cells 
2 (TREM2) or TYRO protein tyrosine kinase binding 
protein (TYROBP), alternatively named DNAX-

activation protein 12 (DAP12), both of which are 
expressed on microglia in the brain (1). Clinically, the 
patients with NHD show recurrent bone fractures during 
the third decade of life, and a frontal lobe syndrome 
during the fourth decade of life, and progressive dementia 
and death until the fifth decade of life (2). Pathologically, 
the brains of  NHD patients  exhibit  extensive 
demyelination designated leukoencephalopathy, 
astrogliosis, accumulation of axonal spheroids, and 
remarkable activation of microglia predominantly in the 
white matter of frontal and temporal lobes and the basal 
ganglia (3). TREM2, expressed exclusively on microglia 
in the brain, serves as a receptor for anionic lipids, 
lipoproteins and apolipoproteins (4,5). TREM2 forms 
a complex with DAP12, a signaling adaptor having an 
immunoreceptor tyrosine-based activation motif (ITAM) 
capable of recruiting the protein tyrosine kinase Syk that 
transduces a variety of downstream signals (6). TREM2 
transmits microglial signals involved in survival, 
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proliferation, chemotaxis, and phagocytosis (7). 
 Alzheimer's disease (AD) is characterized by the 
hallmark pathology comprised of widespread amyloid-β 
(Aβ) deposition, formation of neurofibrillary tangles 
(NFTs) composed of abnormally phosphorylated tau 
(p-tau), extensive neurodegeneration, and profound 
activation of microglia in the brain (8). Recent studies 
identified rare genetic variants of TREM2, such as R47H 
and R62H, closely associated with an increased risk for 
development of AD (9). 
 A recent study showed that TREM2 deficiency 
generates greater amounts of Aβ deposition in the 
hippocampus of 5XFAD mice, a mouse model of 
AD, due to a dysfunctional response of microglia to 
amyloid plaques, suggesting that TREM2 facilitates 
Aβ clearance by microglia (4). TREM2 interacts with 
fibrillar Aβ decorated with anionic and zwitterionic 
lipids (4). Aβ-lipoprotein complexes are efficiently 
taken up by microglia, depending on TREM2 (5). 
TREM2 deficiency induces apoptosis of microglia and 
reduces recruitment of microglia around Aβ plaques in 
the brains of mouse models of AD (4). Furthermore, 
microglial processes enriched in TREM2 tightly 
surround early amyloid fibrils and plaques, and promote 
their compaction and insulation (10). In TREM2- or 
DAP12-deficient mouse models of AD, microglia 
showed a markedly reduced ability to envelope amyloid 
deposits, leading to an increase in less compact and 
more diffuse plaques associated with greater neuritic 
damage (10). These observations suggest that TREM2/
DAP12-mediated microglial response limits diffusion 
and toxicity of amyloid plaques by forming a protective 
barrier (10,11). However, at present, the levels of 
Aβ deposition in postmortem NHD brains, where 
the biological function of TREM2/DAP12 signaling 
pathway is completely lost, remain unknown. A 
previous study reported a 48-year-old man of NHD 
with numerous senile plaques and neurofibrillary 
tangles throughout the cerebral cortex (12), suggesting 
that an impaired TREM2/DAP12 signaling function 
facilitates Aβ accumulation in the human brain. In the 
present study by immunohistochemistry, we investigate 
the expression of Aβ and p-tau in NHD brains to 
clarify whether the Alzheimer's disease pathology is 
augmented in NHD.

2. Materials and Methods

2.1. Human brain tissues

The brain autopsies were performed at the National 
Center Hospital, National Center of Neurology and 
Psychiatry (NCNP), Japan and affiliated hospitals 
of Research Resource Network (RRN), Japan. 
The comprehensive examination by an established 
neuropathologist (YS) validated the pathological 
diagnosis. In all cases, written informed consent was 

obtained. The Ethics Committee of the NCNP for the 
Human Brain Research and the Human Research Ethics 
Committee of the Meiji Pharmaceutical University 
(MPU) approved the present study. 
 For immunohistochemical studies, serial sections of 
the frontal cortex and the hippocampus were prepared 
from five AD patients, composed of a 68-year-
old woman (AD1), a 68-year-old woman (AD3), a 
56-year-old man (AD4), a 59-year-old man (AD5), 
and an 80-year-old man (AD8) and five NHD patients, 
composed of a 42-year-old man (NHD1), a 48-year-old 
woman (NHD2), a 44-year-old man (NHD3), a 32-year-
old woman (NHD4), and a 38-year-old man (NHD5). 
The homozygous mutation of a single base deletion of 
141G (c.141delG) in exon 3 of DAP12 was identified 
in NHD1, NHD2, and NHD5, while the genetic 
analysis was not performed in NHD3 or NHD4. All AD 
cases were satisfied with the Consortium to Establish a 
Registry for Alzheimer's Disease (CERAD) criteria for 
diagnosis of definite AD (13). They were categorized 
into the stage C of amyloid deposition and the stage VI 
of neurofibrillary degeneration, following the Braak's 
staging (14).

2.2. Immunohistochemistry

After deparaffination, tissue sections were heated in 10 
mM citrate sodium buffer, pH 6.0 by autoclave at 110℃ 
for 15 min in a temperature-controlled pressure chamber 
(Biocare Medical, Pacheco, CA, USA). Then, they 
were treated at room temperature (RT) for 5 min with 
formic acid before labeling with anti-Aβ antibody. They 
were incubated with phosphate-buffered saline (PBS) 
containing 10% normal goat serum at RT for 15 min 
to block non-specific staining, followed by incubation 
in a moist chamber at 4℃ overnight with mouse 
monoclonal anti-Aβ peptide antibody at a concentration 
of 1 μg/mL (12B2; Immunobiological Laboratories, 
Gunma, Japan) that reacts with Aβ40, Aβ42, and 
Aβ43 or mouse monoclonal anti-phosphorylated tau 
(Ser202, Thr205) antibody at 0.025 μg/mL (AT8; 
ThermoFisher Scientific, Waltham, MA, USA). After 
washing with PBS, tissue sections were incubated at RT 
for 30 min with alkaline phosphatase (AP)-conjugated 
secondary antibody (Nichirei, Tokyo, Japan), followed 
by exposure to Warp Red chromogen (Biocare 
Medical). For double immunolabeling, following 
heat treatment, tissue sections were treated with 3% 
hydrogen peroxide-containing water to block the 
endogenous peroxidase activity, and immunolabeled at 
4℃ overnight with rabbit polyclonal anti-Iba1 antibody 
at 0.5 μg/mL (Wako Pure Chemical, Tokyo, Japan) for 
a marker specific for microglia. They were incubated 
at RT for 30 min with horseradish peroxidase (HRP)-
conjugated secondary antibody (Nichirei), followed 
by exposure to diaminobenzidine tetrahydrochloride 
(DAB) substrate (Vector, Burlingame, CA, USA). The 
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Figure 1. Aβ immunoreactivity in NHD and AD brains. (a) the hippocampus white matter of NHD (NHD4), Aβ (red) and 
Iba1 (brown), spheroids (arrows), (b) the frontal lobe white matter of NHD (NHD5), Aβ (red) and Iba1 (brown), spheroid, (c) the 
hippocampus white matter of NHD (NHD2), Aβ (red) and Iba1 (brown), spheroid, and (d) the frontal cortex of AD (AD8), Aβ (red) 
and Iba1 (brown), amyloid plaques.

Figure 2. P-tau immunoreactivity in NHD and AD brains. (a) the hippocampus of NHD (NHD5), p-tau (red) and Iba1 (brown), 
no NFT, (b) the hippocampus of NHD (NHD1), p-tau (red) and Iba1 (brown), several NFTs, (c) the hippocampus of NHD (NHD2), 
p-tau (red) and Iba1 (brown), one NFT, and (d) the hippocampus of AD (AD5), p-tau (red) and Iba1 (brown), numerous NFTs.
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tissue sections were processed for a counterstain with 
hematoxylin. Negative controls underwent all the steps 
except for exposure to the primary antibody.

3. Results and Discussion

In mouse models of AD, the loss of function of TREM2 
increases Aβ plaque burden possibly through decreased 
phagocytic clearance of Aβ by microglia (4). Loss of 
TREM2 function reduces the ability of microglia to 
engulf Aβ (15). AD patients with the TREM2 variant 
of R47H showed fewer microglia surrounding plaques, 
increased numbers of filamentous non-compacted 
plaques, and more p-tau-positive neurites around 
plaques (10). In all NHD cases, we found several 
small Aβ-immunoreactive deposits, and some of them 
might represent axonal spheroids located chiefly in the 
white matter of the frontal cortex and the hippocampus 
(Figure 1a-c). They were spherical in shape with 
smooth margins devoid of the core. Iba1+ microglia 
occasionally contacted these spheroids (Figure 1c). 
In support of these observations, a previous study 
showed the persistent accumulation of Aβ42 in axonal 
spheroids in a rat model of traumatic injury (16). In 
contrast, amyloid plaques, compact or diffuse, and 
amyloid angiopathy were almost undetectable in any 
cases. Aβ-immunoreactive spheroids consisted of 
4-22 spots/20 fields in the frontal cortex and 2-16 
spots/20 fields in the hippocampus of NHD brains 
under microscopic examination at a magnification 
of 200 ×. In contrast, the deposition of Aβ was much 
extensive in AD brains (Figure 1d). The omission of the 
primary antibody did not show any positive reactions. 
In NHD brains except for NHD5, we identified a small 
cluster of NFT-bearing neurons labeled by anti-p-tau 
antibody located predominantly in the hippocampus 
(Figure 2a-c). NFT-bearing neurons consisted of 
0-11 neurons/20 fields in the frontal cortex and 0-34 
neurons/20 fields in the hippocampus of NHD brains 
under microscopic examination at a magnification of 
200 ×. We found a trend for the age-dependent increase 
in p-tau-immunoreactive NFT-bearing neurons. In 
contrast, numerous p-tau-immunoreactive neuronal 
deposits, composed of NFTs and dystrophic neurites, 
were observed in AD brains (Figure 2d). These results 
indicated that the loss of function of TREM2/DAP12 
signaling pathway does not accelerate AD pathology in 
NHD brains.
 The discrepancy between TREM2-deficient AD 
mice showing greater amounts of Aβ deposition in 
the hippocampus (4) and NHD patients not exhibiting 
the acceleration of Aβ deposition in the frontal cortex 
and the hippocampus is attributable to a difference 
in species, ages, and genetic backgrounds. Plaque 
accumulation is exacerbated at later ages in a TREM2 
knockout AD mouse model (17). In AD patients, 
Aβ plaques appear a decade or two before clinical 

symptoms of AD (18). In the present study, NHD 
patients are 32- to 48-year-old. Therefore, they could 
be affected by the early AD pathology according to 
their ages. Importantly, by using florbetapir-amyloid-
positron emission tomography (PET), a recent study 
demonstrated extensive Aβ deposition in the grey 
matter of the inferior frontal and occipital lobes of a 
39-year-old Italian NHD woman with a homozygous 
Q33X mutation in TREM2, suggesting the existence 
of overlapping pathogenic mechanisms between NHD 
and AD (19). In the present study, three cases of NHD 
showed the homozygous mutation of c.141delG in exon 
3 of DAP12. A recent study showed that deficiency 
of DAP12 does not modify the number and size of 
Aβ plaque deposition in the prefrontal cortex and the 
hippocampus of APP/PSEN1 mice, although DAP12 
deficiency reduces plaque compaction, microglial 
clustering, and phagocytosis (20). Furthermore, 
phosphorylation of tau is attenuated in female APP/
PSEN1 mice with loss of DAP12. In contrast, silencing 
of brain TREM2 exacerbates tau pathology in P301S tau 
transgenic mice, associated with neuroinflammation-
induced overactivation of tau kinases, such as cyclin 
dependent kinase 5 (CDK5) and glycogen synthase 
kinase 3 beta (GSK3B) (21). Thus, the absence of 
either DAP12 or TREM2 produces apparently opposing 
effects on progression of AD pathology in mouse 
models of AD. 
 In summary, we identified no obvious Aβ plaques 
and a small number of p-tau-immunoreactive NFT-
bearing neurons in NHD brains. Because AD pathology 
is less evident in NHD than the full-brown AD, it does 
not play an active role in the development of NHD.
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