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1. Introduction

Nail-patella syndrome (NPS; OMIM #161200), also 
known as hereditary osteoonychodysplasia, is a rare 
autosomal dominant disease characterized by nail 
malformations, absent or hypoplastic patellae, dysplasia 
of the elbows and dorsal ilium, nephropathy, and, in 
some cases primary open-angle glaucoma (1). Other 
common findings in NPS are hyperpigmentation of the 
central part of the iris (Lester's sign), ocular hypertension, 

and sensorineural hearing loss. Furthermore, some 
patients present with renal involvement, ranging from 
asymptomatic proteinuria to nephrotic syndrome and 
sporadically end-stage renal failure (2-4). 
 The disease is caused by heterozygous loss-
of-function mutations in the gene LMX1B, located 
on chromosome 9q34, which encodes the LIM-
homeodomain transcription factor LMX1B (5-7). 
Molecular studies in Lmx1b knock out (KO) mice have 
shown that Lmx1b plays an important role in dorso-
ventral patterning of limb development, morphogenesis 
and function of the podocytes and the glomerular 
basement membrane, and development of the anterior 
segment of the eye (8-11). Some of these findings 
indicate that the skeletal phenotype of NPS is the 
consequence of a defect in developmental patterning. 
More recent studies in an inducible podocyte-specific 
Lmx1b KO mouse have shown that deletion of this gene 
in fully differentiated podocytes causes proteinuria 
and deregulation of the actin cytoskeleton (12). This 
indicates an essential role of Lmx1b in maintenance of 
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differentiated podocytes in adult kidneys. The LMX1B 
protein contains two N-terminal zinc-binding LIM 
domains, LIM-A and LIM-B, which mediate protein-
protein interactions, a homeodomain important for 
DNA binding, and a C-terminal glutamine-rich region 
that could be involved in transcriptional regulation 
(1). Activation of transcription by LMX1B requires its 
interaction with other transcription factors. Different 
LMX1B mutations that cause NPS have been identified, 
including mainly missense and nonsense mutations, 
small deletions and insertions, splice site mutations, and 
a few large gene deletions (3,13-15). These mutations 
are generally located in the homeodomain or in the 
LIM domains and affect conserved amino acid residues 
(16). It has not been possible to establish a correlation 
between phenotype and genotype in NPS patients. In 
fact, significant phenotypic variability at the individual, 
intrafamilial, and interfamilial level has been reported 
for different NPS symptoms (2). However, specific 
mutations in the central homeodomain of LIMX1B 
seem to be associated with proteinuria and nephropathy 
without the NPS skeletal defects (2,4). 
 In the present study, we report the clinical findings 
of a Spanish family with three NPS affected members, 
and the identification of a novel heterozygous LMX1B 
missense mutation that segregates with the disease and 
disturbs the LIM-A domain of LMX1B. 

2. Subjects and Methods

2.1. Patients

The index case, a 7-year-old boy, was the second child 
of a non-consanguineous marriage, who presented at 
birth with a vertical astragalus foot, joint hypermobility 
and muscular hypotonia. In successive consultations, 
nail dystrophy and Lester's sign in his right eye were 
observed (Figures 1A and 1B). His father also showed 
clinical signs compatible with NPS including dystrophic 
nails and bilateral elbow dysplasia, not achieving 
extension of elbows. Consequently, clinical and genetic 
studies were also requested for his father and his 9-year-
old brother. This clinical study included radiology, 
renal ultrasound, and urine analysis. Informed written 
consent for the genetic analysis was obtained from the 
patients' parents. The Ethics Committee of Nuestra 
Señora de Candelaria University Hospital (Santa Cruz 
de Tenerife, Spain) approved this study.

2.2. Mutation analysis

After obtaining written informed consent, genomic 
DNA of patients and relatives was extracted from 
peripheral blood samples using the Gen Elute Blood 
Genomic DNA kit (Sigma-Aldrich, St. Louis, MO, 
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Figure 1. Clinical features of patients. (A and C) Dystrophic nails in index case and his father, respectively; (B) Lester's sign in 
index case; (D and E) Absent patella in index case; (F) Absent patella the patient's brother; (G) Presence of kneecaps in the father.
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in around 50% of the NPS patients (1). Approximately 
10% of NPS patients will develop glaucoma and a 
smaller percentage has ocular hypertension (1), but 
these features were lacking for now in this family. 
The prognosis of NPS patients is established by their 
renal manifestations, which occur in approximately 
40% of NPS patients and ranges from asymptomatic 
proteinuria to occasional renal failure (2,4). These 
manifestations may take many years to appear. Renal 
involvement was not present in any of our patients. It 
is worth noting that the mutation identified in our study 
is located in de LIM-A domain, since NPS patients 
with LMX1B mutations affecting the homeodomain 
showed significantly higher frequency of nephropathy 
and higher values of proteinuria than those carrying 
mutations in the LIM domains (2). The factors 
responsible for the phenotypic heterogeneity in NPS 
are basically unknown but it is possible that there are 
genetic variants that modify the interaction of LMX1B 
with other proteins giving rise to different clinical 
manifestations. Only a few cases of NPS have been 
reported in Spain (18-20) and, in general, pediatricians 
are not familiar with this disease.
 Sequencing analysis of the proband revealed a 
novel heterozygous mutation, c.305A>G, in exon 
2 of LMX1B (Figure 2A). The mutation segregated 
with the disease in the family; it was also present in 
heterozygous state in the patient's brother and father 
(Figures 2A and 2B). This new LMX1B variant implies 
the substitution of tyrosine 102 for cysteine, p.(Y102C), 
and it was not found in databases such as ExAC, TGP, 
HGMD and ClinVar. To obtain an estimation of the 
mutation pathogenicity, we evaluated the change of 
tyrosine for cysteine at position 102 of the LMX1B 
protein with five different bioinformatics tools. All 
of them predicted that the mutation affects protein 
function (Table 1). This amino acid residue is highly 
conserved among eight different species (human, 
mouse, cat, chicken, fugu, pufferfish, zebra fish, fruit 
fly and worm) and among other LIM proteins (Figure 
2C). The novel variant described here was submitted to 
ClinVar and was included with the accession number 
NM_001174146.1 (https://www.ncbi.nlm.nih.gov/
clinvar/variation/587694/).
 LIM-homeodomain proteins contain two cysteine-
rich zinc-binding LIM domains near the amino terminus 
that are involved in interactions with other cofactors 
for cooperative transcriptional regulation of genes in a 
tissue-specific manner (21). Most LIMX1B mutations 
affect the LIM domains or the homeodomain by altering 
amino acids that are essential for the binding of zinc or 
amino acids essential for DNA binding, respectively. 
Functional studies of a few LMX1B mutations have 
shown reduced transcriptional activity and decreased 
DNA-binding ability, resulting in the partial or 
complete loss of LMX1B function (6,15,22). These 
and other results suggest that the main pathogenic 

USA) following the manufacturer's instructions. The 
eight coding exons and the flanking intronic sequences 
of LMX1B were amplified by polymerase chain reaction 
(PCR) using intronic primers previously described 
(17). PCR products were purified with the QIAquick 
PCR purification kit (Qiagen, Hilden, Germany) and 
sequenced with the BigDye Terminator v3.1 Cycle 
Sequencing Kit (Applied Biosystems, Foster City, 
CA, USA). Sequence reactions were purified with 
Performa® DTR Gel Filtration Cartridges (EdgeBio 
BioSystems, Gaithersburg, Maryland, USA), and 
analyzed on a 3500 Series Genetic Analyzer (Applied 
Biosystems, Foster City, CA, USA). Mutations were 
identified by comparison to the LMX1B reference 
sequence NG_017039.1 (https://www.ncbi.nlm.nih.gov), 
and confirmed by sequencing additional independent 
amplification products. We examined several databases, 
including Exome Aggregation Consortium (ExAC, 
http://exac.broadinstitute.org), 1000 Genomes Project 
(TGP, http://www.internationalgenome.org), Human 
Gene Mutation Database (HGMD, http://www.hgmd.
cf.ac.uk/ac/index.php) and ClinVar (https://www.
ncbi.nlm.nih.gov/clinvar/), to verify that the mutation 
detected in our patients was not a common variant and 
to confirm that it was novel. Online bioinformatics tools 
PolyPhen (http://genetics.bwh.harvard.edu/pph2), SIFT 
(http://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.
html), Align GVGD (http://agvgd.iarc.fr), MutPred2 
(http://mutpred.mutdb.org) and Mutation Taster (http://
www.mutationtaster.org) were used to predict the 
pathogenicity of the mutation. Default settings were 
used for all programs. The protein sequence of human 
LMX1B (isoform 2 containing 402 amino acids) was 
obtained from the NCBI database (accession number 
NP_001167618.1). Human Splicing Finder v3.1 (HSF) 
was used to predict the effect of the new mutation on 
exonic splicing regulatory sequences (http://www.umd.
be/HSF3/).

3. Results and Discussion

Radiological examination revealed bilateral agenesis 
of the patellae in the index case and his brother, 
and confirmed the existence of kneecaps in their 
father (Figures 1D to 1G). Urinalysis did not reveal 
proteinuria in any of the cases, and renal ultrasound 
examination showed normal kidneys. Therefore, 
affected members of the family studied here displayed 
the typical characteristics of NPS including dysplastic 
nails, the most constant characteristic of NPS, absent 
patella and elbow dysplasia. However, they showed 
varying phenotypes as has been described for other 
families with NPS (13,14,17). The index case presented 
nail dysplasia and bilateral agenesis of patellae, while 
his bother only showed absence of patella, and his 
father displayed dystrophic nails and elbow dysplasia. 
The proband showed the Lester's sign, which is present 
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mechanism causing NPS is haploinsufficiency 
(7,15,23,24). Tyrosine residue 102 of LMX1B is 
located in the second zinc-binding motif of the LIM-A 
domain, next to cysteine 103, which is one of the four 
amino acid residues involved in zinc binding (Figure 
3). Several missense mutations in the LIM-A domain 
of LIMXB, including p.(C103W) and p.(D106G), that 
lead to substitutions of amino acids essential for the 

binding of zinc have been identified in NPS patients 
(Figure 3) (14,16). Similar mutations affecting highly 
conserved cysteine residues within the LIM-B domain 
have also been reported (3,13). Therefore, we suggest 
that p.(Y102C) disturbs the binding of zinc and the 
function of LMX1B. 
 Previous studies in other genes have shown that 
some exonic mutations can be damaging by altering pre-

Figure 2. Mutation analysis of the family with NPS and evolutionary conservation of tyrosine 102. (A) Electropherograms 
showing the partial sequence of LMX1B exon 2 in affected members of the family and a control. The arrows indicate the location of 
the identified heterozygous missense mutation c.305A>G, p.(Y102C). (B) Pedigree of the family. Filled and open symbols represent 
affected and normal individuals, respectively. Circles and squares indicate females and males, respectively. The index case is marked 
with an asterisk. -, mutant LMX1B allele; +, normal LMX1B allele. (C) Protein alignment showing that tyrosine 102 (highlighted 
in light blue) in the LIM-A domain of LMX1B is totally conserved among species and among other LIM proteins suggesting that 
it is important for the zinc finger structure and function. The eight highly conserved zinc-binding residues (cysteine, histidine and 
aspartic acid) are highlighted in green. Since the less conserved spacer regions vary in size, non-conserved amino acid residues G87 
and I88 of C. elegans LIM protein, S33, T56, C57 of ISL1, Y117 and V135 of FHL1, S26, G55 of LIMS1, and P521 of paxillin, 
were deleted to facilitate the alignment of the zinc-binding residues. Black and grey letters represent conserved and nonconserved 
residues, respectively. The LIM consensus sequence is shown at the bottom of the figure, where X represents any amino acid (21). 

Table 1. Bioinformatics predictions of pathogenicity for mutation p.(Y102C)

Tool

Score
Prediction

PolyPhen-21

0.991
Probably damaging

SIFT2

0.00
Affects function

1The PolyPhen-2 score ranges from 0.0 to 1.0. Values closer to 1.0 are more confidently predicted to be deleterious. Variants with scores in the range 
0.0 to 0.15 are predicted to be benign, while variants with scores in the range 0.15 to 1.0 are possibly damaging. Variants with scores in the range 
0.85 to 1.0 are more confidently predicted to be damaging. 2The SIFT probability score ranges from 0 to 1.0. Amino acid substitutions with scores 
< 0.05 are predicted to be deleterious (scores closer to 0 are more confidently predicted to be deleterious). Variants with scores in the range 0.05 to 
1.00 are predicted to be tolerated (scores very close to 1.0 are more confidently predicted to be tolerated). 3Align-GVGD classifies variants in seven 
risk grades (C0, C15, C25, C35, C45, C55, C65) with C65 most likely to interfere with function and C0 least likely. 4The general score of MutPred2 
ranges from 0.0 and 1.0, with a higher score indicating a greater propensity to be pathogenic. 5The MutationTaster score ranges from 0.0 to 215. It is 
taken from the Grantham Matrix for amino acid substitutions and reflects the physicochemical difference between the original and the mutated amino 
acid.

Align GVGD3

Class C65
Affects function

MutPred4

0.919
Deleterious

MutationTaster5

194
Disease causing
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mRNA splicing (25-27). Since mutation c.305A>G is 
located in exon 2, twenty-two nucleotides away from the 
donor splice site of intron 2, we analyzed its potential 
effect on splicing. Results obtained with HSF showed 
that the A to G change (underlined) creates a potential 
exonic splicing silencer (5'-ACTGTGCTG) and could, 
therefore, alter LMX1B pre-mRNAsplicing. This will 
have to be investigated further using RNA from a patient 
or cell lines expressing the mutant LMX1B.
 In conclusion, we identified a novel LMX1B 
missense mutation, c.305A>G, p.(Y102C), in a family 
with NPS. We suggest that this mutation, located in the 
highly conserved LIM-A domain of LMX1B, affects 
the formation of a zinc-binding motif and disturbs the 
interaction of the protein with other transcription factors. 
Mutation p.(Y102C) expands the spectrum of LMX1B 
mutations. The identification of missense mutations 
within the LIM domains may help elucidate the function 
of these domains.
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