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SUMMARY Developmental dysplasia of the hip (DDH) is a multifactorial disease, which occurs under
environmental and genetic influence. The etiopathogenesis of DDH has not been fully explained. As
research progresses, many candidate genes have been found to be closely related to the occurrence
of DDH. In this study, we comprehensively examined 16 susceptibility genes of DDH using
bioinformatics. COL1A1 encodes the pro-alphal chains of type I collagen, which is the major protein
component of the bone extracellular matrix (ECM). The genes displaying the most statistically
significant co-expression link to COLIA1 are ASPN, TGFBI1, DKKI, IL-6, TENM3 and GDF.
DKKI1, FRZB and WISP3 are components of the Wnt signaling pathway. CX3CR1 and GDF5
regulate chondrogenesis through the canonical Wnt signaling pathway. ASPN could induce collagen
mineralization through binding with collagen and calcium. Integrated bioinformatics analysis indicates
that ECM, Wnt signaling pathway and TGF-f signaling pathway are involved in the occurrence of
DDH. These provide a basis for further exploring the pathogenesis of DDH.

Keywords developmental dysplasia of the hip, bioinformatics, protein-protein interaction, susceptibility gene,

Wnt signaling pathway

1. Introduction

Developmental dysplasia of the hip (DDH), also
known as congenital hip dislocation or congenital hip
dysplasia, is one of the most frequent skeletal anomalies
in newborns (/). It is characterized by laxity of the joint
capsule caused by mild or incomplete formation of the
acetabulum, secondary deformity of the proximal femur
and complete luxation (2). Although early screening
and treatment can help DDH children recover better,
there are still many with residual malformations, such
as re-dislocation, femoral head necrosis, and residual
acetabular dysplasia, which may then develop into adult
osteoarthritis, and often requires joint replacement.
The whole treatment cycle is long and brings a huge
burden to the family. How to fundamentally prevent
the occurrence of DDH is an urgent clinical issue to be
solved. Hence, it is of great importance to explore the
etiology and pathogenesis of DDH.

However, the multifactorial etiology and pathogenesis

of DDH have not yet been sufficiently clarified. Many
studies have shown that genetic, environmental,
and mechanical factors play an important role in the
occurrence of DDH (3). The theory of the autosomal
dominant mode with incomplete penetrance is popular.
So the genetic factors occupy an important position
in the pathogenesis of DDH (4). Genes involved in
osteogenesis and chondrogenesis and genes associated
with the formation of joint structures and connective
tissue contribute to the occurrence of this disorder (2).

To date, 16 genes with the highest correlation of
DDH in different populations have been reported. These
include ASPN, BMS1, CX3CRI1, COL1A41, DKKI1, FRZB,
GDF'5, HOXBY, HOXDY, IL-6, PAPPA2, TBX4, TENM3,
TGFBI1, UQCCI, and WISP3(CCNG6) (3,4). Changes
in some genes, such as DKKI, WISP3, HOX, UQCCI,
TENM3, CX3CRI, PAPPA2 and FRZB, directly lead to
abnormal formation of fibrous, bone, and cartilage tissue
(5-13). Abnormal interactions of IL-6 and TGFBI also
produce the same result (/4). The COLIA1 gene encodes
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the alphal chain of collagen, which is the structural
component of cartilage. The promoter variations
(rs113647555) in COL1A1 affect joint laxity (/5). A
positive correlation between GDF'5 polymorphisms and
DDH has been demonstrated (/6). TBX4 and ASPN also
act as key regulators that affect the number of fibroblasts
in tendons and fascia, resulting in relaxation around the
hip joint and increasing the risk of dislocation (/7,18).
BMSI (rs201298233) indirectly affects bone resorption
and mineral density by participating in a large protein-
protein interaction (PPI) network (/9). Bioinformatics
was used in this study to examine the relationship
of 16 reported DDH susceptibility genes, with the
expectation of gaining insight into the possible molecular
mechanisms of DDH.

2. Materials and Methods

2.1. Phylogenetic analysis and visualization of gene
structures

Sequences of ASPN, BMSI, CX3CRI, COLIAl, DKK]I,
FRZB, GDFS5, HOXBY, HOXDY, IL-6, PAPPA2, TBX4,
TENM3, TGFBI, UQCCI, and WISP3(CCNG6) in Fasta
format as well as their encoding protein sequences were
derived from the NCBI database (https.//www.ncbi.nlm.
nih.gov/). The visualization to truly show the location
of these 16 genes on the chromosome was performed
by the "gene on genome from Fasta" tool of TBtools
software. Multiple alignment of their protein sequences
was performed using CLUSTAL 2.0 software. A
phylogenetic tree was constructed through Molecular
Evolutionary Genetic Analysis (MEGA) software. Motif
detection of these 16 protein sequences was performed
using the MEME tool (https://meme-suite.org/meme/
index.html), with the number of motifs equal to 15 and
classic mode parameters setting (20). The obtained motif
mining results and gene structure in Fasta format were
visualized in "amazing optional gene viewer" of TBtools
software.

2.2. Prediction of coexisting proteins and PPI networks

The STRING (https://cn.string-db.org/) and the
GeneMANIA (https.//genemania.org/) online tools were
used to analyze the interactions of the 16 proteins coded
by DDH susceptibility genes. The STRING website was
used to obtain the available protein association networks
by using the query of Multiple Proteins by names and
organism ("Homo sapiens"). The interaction relationship
between these 16 proteins was obtained by setting the
following parameters: meaning of network edge was
set as evidence, text-mining, experiments, databases,
co-expression, neighborhood, gene fusion and co-
occurrence were all selected as active interaction sources,
with a medium confidence value of 0.4 (27). In the
GeneMANTIA online tool, the types of interactions were

revealed by choosing the organism "Homo sapiens", and
co-expression, co-localization, physical interactions,
shared protein domains and pathway were set.

2.3. Expressive tightness analysis of genes

Correlation expression analysis of DDH susceptibility
genes was conducted by MEM-Multi Experiment
Matrix (https://biit.cs.ut.ee/mem/index.cgi) to obtain
the experimental research expression matrix of 16
genes (22,23). Genes were entered into the text field,
A-AFFY-44 collection was chosen and COLIA] was
used as the reference gene. Other procedures included
setting 0.29 as StDev threshold for query gene, choosing
StDev as dataset weight, and using 100 as the number of
most variant datasets.

2.4. Enrichment analysis of related genes

To explore interacting proteins for the above 16
different proteins, STRING was used. Experiment-
based interacting proteins were acquired by setting the
parameters as follows: meaning of network edges was set
as evidence, active interaction sources were experiment-
based only, high confidence value of 0.150, and no more
than 50 interactors in 1st shell. As above, GeneMANIA
was conducted to obtain interacting proteins for these 16
target proteins. Meanwhile, "Similar Gene Detection"
module of GEPIA2 (http.//gepial.cancer-pku.cn/#index)
was adopted to gain the top 20 correlated genes for
these 16 queries (24). Interacted proteins predicted from
STRING, GeneMANIA and GEPIA2 were compared
by Venn analysis (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

By combing the above two sets of data, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was conducted using Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) (https://david.ncifcrf.gov/) online tools, then
visualized with "Cairo" (https://cran.r-project.org/web/
packages/Cairo/index.html), "stringr" (https://cran.
r-project.org/web/packages/stringr/index.html), and
"goplot2" (https://cran.r-project.org/web/packages/
ggplot2/index.html) R packages. Gene Ontology
(GO) enrichment of biological process (BP), cellular
component (CC), and molecular function (MF) were
visualized by "clusterProfiler" R package (http://
www.bioconductor.org/packages/release/bioc/html/
clusterProfiler.html). P < 0.01 was set as the statistical
significance threshold value.

2.5. Genetic alteration analysis

For the analysis of alteration in ASPN, BMS1, CX3CRI,
COLIAI, DKKI, FRZB, GDF5, HOXB9, HOXDY,
IL-6, PAPPA2, TBX4, TENM3, TGFBI1, UQCCI, and
WISP3(CCNG6), the cBioPortal (https://www.cbioportal.
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org/) browser was selected in "TCGA Pan Cancer Atlas
Studies" module. The frequency and characteristics of
three different types of alteration including mutated
gene, amplification and copy number alteration (CNA)
were analyzed in all tumors recorded by TCGA
databases (25,26). The corresponding mutation sites
of PAPPA2 and TENM3 were conducted through
"mutations" module.

3. Results

3.1. Phylogenetic analysis and visualization of gene
structures

The locations of DDH susceptibility genes are
scattered and spread over 11 chromosomes. There are
no collinear genes. HOXD9 and FRZB are located
on chromosome 2. BMSI and DKK]I are located on
chromosome 10. HOXBY9, COLIAI and TBX4 are
located on chromosome 17. GDF5 and UQCCI are

located on chromosome 20. The other seven genes
are located on chromosomes 1, 3, 4, 6, 7, 9, and 19,
respectively. It is worth noting that GDF5 and UQCC!
are relatively close (Figure 1A). A previous study has
shown that abnormal bone growth and development
in humans is associated with common variants in the
GDF5-UQCC region (27).

The motif structures of 16 proteins are quite
different, which reflects the complexity of DDH at the
protein macromolecule level. Pathogenically, HOXB9
and HOXDY, which belong to the same family, are
structurally similar, which is also consistent with the
gene structure results (Figure 1B). In addition to the
gene structures and phylogenetic tree, we also compared
the positions and numbers of exons and introns of 16
genes (Figure 1C). The results showed that there is a
diversity of structures for DDH susceptibility genes,
among which TENM3 is the largest, PAPPA?2 is second,
DKK1 is the smallest, and there is no good evolutionary
relationship among these genes.
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Figure 1. Phylogenetic analysis and visualization of chromosomal location and structures of 16 DDH susceptibility genes. (A) Chromosome

location; (B) Phylogenetic analysis; (C) Gene structure.
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3.2. Prediction of coexisting proteins and PPI networks

PPI analysis conducted by STRING indicated that co-
expression is the most common among all interactions
of 16 analyzed proteins, and it is worth noting that
COLIAI encoding protein has a co-expression
relationship with four proteins, namely ASPN, GDFS5,
DKKI1, and IL6 (Supplementary Table S1, http://
www.irdrjournal.com/action/getSupplementalData.
php?ID=98, Figure 2A). The highest score between
COL1A1 encoding protein and ASPN protein was 0.38.
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The prediction results of the GeneMANIA database
showed that these 16 proteins were associated with
TSR1, DKK2, DKK3, RSPO1, TENM2, DKK4,
GTF3A, ITGA11, TENM1, KREMEN2, TENM4,
IL17A, MED12, HOXC9, HOXA9, PAPPA, COL1A2,
FZD8, CSF3 and VEGFD, a total of 20 proteins (Table
1, Figure 2B). It is worth noting that TGFB1 and
GDFS5 share common domains. TGFB1 and GDF5 are
members of the TGF-B superfamily, and both act as
important regulators in bone and cartilage formation in
DDH-related pathways (3).
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Figure 2. Predicted protein-protein interaction. (A) The interaction networks between 16 DDH susceptibility genes; (B) Protein interaction

networks between susceptibility genes and 20 related genes.

Table 1. Top 20 encoding genes of interacted proteins indicated by GeneMANIA

Gene Description HGNC Rank
TSR1 TSR1 ribosome maturation factor 25542 1
DKK?2 dickkopf WNT signaling pathway inhibitor 2 2892 2
DKK3 dickkopf WNT signaling pathway inhibitor 3 2893 3
RSPOI R-spondin 1 21679 4
TENM?2 teneurin transmembrane protein 2 29943 5
DKK4 dickkopf WNT signaling pathway inhibitor 4 2894 6
GTF34 general transcription factor IIIA 4662 7
ITGAII integrin subunit alpha 11 6136 8
TENM1 teneurin transmembrane protein 1 8117 9
KREMEN?2 kringle containing transmembrane protein 2 18797 10
TENM4 teneurin transmembrane protein 4 29945 11
IL174 interleukin 17A 5981 12
MEDI2 mediator complex subunit 12 11957 13
HOXCY9 homeobox C9 5130 14
HOXA9 homeobox A9 5109 15
PAPPA pappalysin 1 8602 16
COLIA2 collagen type I alpha 2 chain 2198 17
FZD$8 frizzled class receptor 8 4046 18
CSF3 colony stimulating factor 3 2438 19
VEGFD vascular endothelial growth factor D 3708 20
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3.3. Expressive tightness analysis of genes

The correlation matrix for expression data of the 16
genes was obtained from the MEM-Multi Experiment
Matrix open database. We used COLIA1 as the reference
standard. The results showed that there were higher
expression densities between COLIA1 and 6 genes:
ASPN (219087 at), TGFB1 (203085 _s at), DKKI
(204602 _at), IL-6 (205207 at), TENM3 (219523 s
at) and GDF5 (206614 at). The scores were 1.3E-34,
1.49E-25, 2.57E-24, 6.67E-22, 1.31E-17 and 7.61E-12,
respectively (Figure 3). It indicates that ASPN, TGFBI,
DKK1, IL-6, TENM3, GDF5 and COLIAI were more
closely expressed in the corresponding experimental
projects. Although the expression of other genes was
correlated, the expression affinity was not significant.

3.4. Enrichment analysis of related genes

To ensure the reliable protein-protein interaction
predication, experiment-based interacting proteins for the
16 DDH related proteins were analyzed by STRING and
GeneMANIA (Figure 4A, Supplementary table S2, http://
www.irdrjournal.com/action/getSupplementalData.
php?ID=99). Correlated proteins for the 16 proteins were
predicted by GEPIA2 (Supplementary table S2, http://
www.irdrjournal.com/action/getSupplementalData.
php?ID=99). Venn analysis demonstrated that three
proteins, including CSF3, RSPO1 and COL1A2, were
predicted by both GEPIA2 and GeneMANIA. LTBP1
and IL6ST were identified from the intersection analysis
of STRING and GEPIA2 (Figure 4B).

KEGG pathway enrichment analysis suggested that
the analyzed DDH susceptibility genes were mainly
enriched in Wnt, TNF and TGF-f signaling pathways,
signaling pathways regulating pluripotency of stem cells,
ribosome biogenesis, regulation of actin cytoskeleton,
focal adhesion, ECM-receptor interaction, and so on.
Most notably, genes enriched in ribosome biogenesis in
eukaryotes were greater than 20 and -logl0 (p-value)
greater than 12 (Figure 4C).

GO analysis demonstrated the enriched biological
process, which included ncRNA processing,
ribonucleoprotein complex biogenesis, ribosome
biogenesis, rRNA metabolic process, TRNA processing,
and so on (Figure 4D). Cellular components were
enriched in 90s preribosome, collagen-containing
extracellular matrix, collagen trimer, preribosome, small-
subunit processome (Figure 4E). Molecular functions
were mainly enriched in extracellular matrix structural
constituent, glycosaminoglycan binding, growth
factor binding, snoRNA binding, and transforming
growth factor B-activated receptor activity (Figure
4F). Notably, the main function of BMSI is related to
eukaryotic ribosome biosynthesis. At present, there
are few studies on the correlation between BMS1 and
DDH. One study has shown that variants of the BMS/

gene are associated with alterations in bone resorption
and mineral density (/9).

3.5. Genetic alteration for genes

Prevalence and characteristics of genetic alteration
of ASPN, BMS1, CX3CRI, COLIA1l, DKKI, FRZB,
GDF5, HOXBY, HOXDY, IL-6, PAPPA2, TBX4, TENM3,
TGFBI1, UQCCI, and WISP3(CCN6) in 33 types of
cancer in TCGA database were acquired. A total of
10,967 samples originating from 10,953 patients were
tested for five different types of genetic alteration,
including mutations, fusions, amplifications, deep
deletions, and multiple alteration. Mutation was the
predominant type in most tumors as indicated (Figure
5A). After observing the mutations of every gene, it was
found that the highest mutation of 25.9% for PAPPA?2
was identified in melanoma (Figure 5B and 5C). The
mutation frequency of TENM3 in melanoma was as high
as 24.8% (Figure 5D and 5E). In addition, the KEGG
enrichment results also revealed that the related genes of
these 16 genes are highly involved in cancer pathways.
We found that the change of arginine to leucine or
histidine at position 324 of FRZB was identified in
esophageal adenocarcinoma, endometrioid carcinoma
and lung adenocarcinoma. A variant of FRZB (1s7775),
with a cysteine replacement at position 324, was reported
in DDH (/3). Polymorphism at the same locus leads to
the different clinical symptoms of the disease. Similarly,
glutamine to lysine change at position 56 was identified
in skin melanoma. Polymorphism of CCN6 (rs1230345),
resulting in a glutamine to histidine change, was
associated with DDH development (6). Notably, fusion
mutations of UQCC! and GDF5 lead to the development
of lung squamous cell carcinoma. Mutations in GDF5
affect transcriptional processes that ultimately affect joint
angles to exacerbate DDH progression (27).

4. Discussion

Mild acetabular dysplasia or severe hip dislocation during
infancy and early childhood development is defined as
DDH. DDH could cause notable pain and osteoarthritis
by early adulthood (28). It is associated with a variety of
risk factors, such as female gender, intrauterine breech,
and positive family history (29). Postural is one of the
risk factors. About 2% to 3% of normal newborns are
breech births, but breech birth rate in children with
DDH is as high as 16% (30). One in 35 breech-birth
girls are DDH patients (3/). DDH is more likely to
occur in newborns wrapped in knee and hip extension
position. On the contrary, if hip abduction flexion is
kept, the incidence is lower (32). In DDH rabbit model,
the thickening of acetabular cartilage in young rabbits
and fibrosis in adult rabbits were found. The expression
of integrin B, type I collagen and type II collagen were
changed in the process of cartilage thickening and
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Figure 3. Co-expressed 16 susceptibility genes predicted by MEM. COLIA1 was set as the reference gene.
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Figure 5. Genetic alteration for 16 DDH susceptibility genes in different tumors of TCGA using the cBioPortal tool. (A) Mutation types; (B-C) The mutation features and mutation site of PAPPA2; (D-E) The mutation

features and mutation site of TENM3.
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fibrosis, suggesting that mechanical conduction signal
pathway is involved in the degeneration of acetabular
cartilage (33). Meanwhile, both the ratio of different
types of collagen and the size of collagen fibrils changed,
possibly due to the abnormal collagen metabolism (34).
Collagen is one of the main components of extracellular
matrix and it provides stability to the matrix. Variation
in the COLIAI gene promoter is associated with
DDH in Chinese Han (/5). ASPN encodes a cartilage
extracellular protein that belongs to the small leucine-
rich proteoglycan family (SLRP). It binds collagen and
calcium and induces collagen mineralization (35). In
ASPN-/- mice, biomechanical phenotype was changed,
along with relatively thinner collagen fibrils, higher
expression of collagen genes, increased chondroitin/
dermatan and versican proteoglycans, and increased
amount of decorin and biglycan protein (36). Following
the comprehensive bioinformatics analysis, we proposed
that the interaction of collagen and ASPN contributes
to the mechanical change and plays a role in DDH
cartilage degeneration. Enriched KEGG and GO analysis
indicated that DDH susceptibility genes are involved
with ECM pathway, collagen-containing ECM and
glycosaminoglycan binding. Other proteins, like integrin,
were identified, from PPI analysis, to interact with DDH
susceptibility genes. Integrins participate in cell-cell and
cell-matrix interactions. Integrin-ECM was reported in
osteogenesis and the inhibition of chondrogenesis (37).
Wnt signaling pathway is one of the main pathways
enriched in DDH. FRZB is a secreted protein, functioning
as a modulator of Wnt signaling through direct
interaction with Wnts. FRZB was reported to regulate
chondrocyte maturation and long bone development. Its
expression in DDH joint tissue was significantly higher
than that in the control group (/3). FRZB mediated the
cell adhesion pathway and cell spreading by regulating
integrin expression (37). Polymorphisms rs2242070 and
rs3768842 of FRZB were involved in DDH (37). DKK1
binds to the LRP6 co-receptor and inhibits canonical
beta-catenin-dependent Wnt signaling pathway, which
is critical for chondrogenesis and joint formation (38).
WISP3 is a member of the WNT1 inducible signaling
pathway (WISP) protein subfamily, which belongs to
the connective tissue growth factor (CTGF) family. It is
the pathogenic gene for progressive pseudorheumatoid
dysplasia, a joint disease characterized by degeneration
of the cartilage between bones (/). Meanwhile, CX3CR1
regulates chondrocyte proliferation and apoptosis
through the Wnt signaling pathway and this is associated
with the inflammatory reaction of osteoarthritis (39).
GDFS is a ligand of the TGF-B superfamily, which
could induce chondrogenesis in rat limb bud cells (40).
GDFS5 regulates MMP13 expression via DKK1 mediated
Wnt/B-catenin signaling pathway in chondrocytes (4/).
RSPOI, as one of the interaction proteins predicted,
can affect the differentiation process of osteoblasts and
chondrocytes by stimulating the Wnt signaling pathway,

maintaining articular cartilage homeostasis and joint
formation (42,43). Similar to DKK1, it has an important
role in tissue repair and fibrosis (44). Additionally, it was
reported to activate TGF- signaling and suppress the
tumorigenesis of colon cancer (45).

TGFBI1 and IL-6 are pro-inflammatory cytokines,
which take part in the pathogenesis of hip osteoarthritis
(46). They are involved in the bone remodeling process
(47). The HOX genes encode a conserved family of
transcript factors that control morphogenesis and
embryonic skeletal formation through endochondral
ossification (48). A former study has shown that
some HOX genes encode transcription factors that are
important to skeletal development and play a role in
embryonic limb development (49). Their specific role in
the DDH is still unknown. In osteoarthritis, HOTAIR, an
IncRNA HOX transcript antisense RNA, could enhance
the expression of SGTB by acing as miR-1277-5p
sponge, and hence regulates LPS-induced chondrocyte
apoptosis and inflammation (50).

Through comprehensive bioinformatic analysis, we
identified the interactions among susceptibility genes and
signaling pathways correlated with DDH. The results
in this study can eventually provide novel clues for
understanding the molecular mechanisms underlying the
pathogenesis of DDH.
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