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With the development of clinical experience and technology, rare diseases (RDs) are gradually 
coming into the limelight. As they often lead to poor prognosis, it is urgent to promote the accuracy 
and rapidity of diagnosis and promote the development of therapeutic drugs. In recent years, with the 
rapid improvement of single-cell sequencing technology, the advantages of multi-omics combined 
application in diseases have been continuously explored. Single-cell metabolomics represents a 
powerful tool for advancing our understanding of rare diseases, particularly metabolic RDs, and 
transforming clinical practice. By unraveling the intricacies of cellular metabolism at a single-cell 
resolution, this innovative approach holds the potential to revolutionize diagnosis, treatment, and 
management strategies, ultimately improving outcomes for RDs patients. Continued research and 
technological advancements in single-cell metabolomics are essential for realizing its full potential 
in the field of RDs diagnosis and therapeutics. It is expected that single-cell metabolomics can be 
better applied to RDs research in the future, for the benefit of patients and society.

1. Introduction

Rare diseases (RDs) are characterized by their low 
prevalence in the general population (1). Currently, 
around 6,000-8,000 RDs have been identified, but there 
are still many undiagnosed and unknown diseases (2). 
This poses a growing public health concern, particularly 
because the majority (50-75%) of RDs primarily affect 
children, and a significant proportion (approximately 
80%) have a genetic basis (3-5).
 The prevalence of RDs can vary significantly 
depending on the region and specific disease type (6). 
The European Union Regulation on orphan medicinal 
products defines RDs as diseases that affect fewer than 1 
in 2,000 individuals in Europe. Similarly, the American 
Orphan Drug Act defines RDs as diseases that affect 
fewer than 200,000 patients in the United States. In 
China, it is estimated that there are approximately 20 
million RD patients (6). It is important to note that the 
exact morbidity for most RDs is not currently available, 
highlighting the need for further research and awareness 
in this field. Metabolic related diseases comprise a 

significant portion of rare diseases, representing the 
majority (7). These diseases encompass inborn metabolic 
abnormalities as well as other rare metabolic conditions 
with low incidence in the general population (8). 
Inborn errors of metabolism (IEMs) are a subset of rare 
metabolic diseases that result from defects in enzymes, 
co-factors, or transport proteins due to mutations 
affecting crucial metabolic enzymes (8). Currently, there 
are more than 1450 known types of IEMs (9). It shows 
low prevalence but high death rate in IEMs patients. A 
study estimated the global birth prevalence of all-cause 
IEM, which is 50.9 per 100,000 live births, resulting in 
almost 0.4% of child deaths worldwide in 2018 (10).
 Over the years, there have been significant 
advancements in basic research, clinical case registration, 
and the development of orphan drugs for rare diseases 
(11,12). However, it is widely recognized that patients 
with rare diseases face significant challenges in accessing 
a definitive diagnosis and effective treatment, particularly 
in many regions of the world (13). The widespread 
use of next-generation sequencing technology has 
had a transformative impact on diagnostic accuracy 
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and cost-effectiveness, surpassing older technologies 
(14,15). Exome sequencing (ES) has played a crucial 
role in identifying previously unknown diseases as rare 
diseases (16,17). As integrated technologies, such as 
genomic, transcriptomic, metabolomic, proteomic, and 
methyl profiling analyses, are increasingly considered 
for clinical use, functional studies should be conducted 
to facilitate efficient diagnosis and treatment of rare 
diseases (18-21).
 Metabolomics is a field of study that focuses on the 
analysis of metabolites, including amino acids, sugars, 
and lipids (22). These metabolites have been shown 
to play vital roles in cellular signaling and various 
biological processes (23). Different from proteomics and 
genomics, metabolomics provides insights into real-time 
biochemical activity (22). By analyzing metabolomics 
datasets, researchers can uncover relationships between 
cellular activities, metabolic processes, and biological 
mechanisms in both health and disease (24). There are 
three commonly used categories of analytical workflows 
in cell metabolism analysis: testing the general inputs and 
outputs of metabolism, characterizing metabolic enzymes 
through enzyme activity assays, and utilizing steady-
state metabolomics analysis through mass spectrometry 
(MS) technology (25). Single-cell technology enables 
qualitative and detailed analysis of the extensive 
molecular information carried by a large number of 
biomolecules at the single-cell level (26). Single-cell 
metabolomics can identify phenotypic heterogeneity 
between individual cells and discover seemingly similar 
cell subpopulations to decipher disease specificity, 
explore stage differences in disease progression, and 
provide evidence for disease treatment. 
 Capillary electrophoresis electrospray ionization 
(CE-ESI) is one of the new techniques for single-cell 
metabolite analysis (27). This technique allows for in 
situ micro-sampling of live single cells, eliminating the 
need for cell dissection and separation. CE-ESI bridges 
the technical gap between comprehensive non-targeted 
metabolomics and live single-cell analysis (28). Another 
technique, probe-based electrospray ionization (ESI), 
has been specifically designed for in situ single-cell 
metabolite analysis (28). The development of above 
techniques offers dual benefits: reduced detection 
limitations resulting by low sample dilution and the 
ability to recognize unknown molecules. In the field of 
single-cell proteomics by mass spectrometry (SCoPE-
MS), single cells are amplified to generate sufficient 
signals for peptide sequencing using tandem mass 
tags (TMT) (29). Looking ahead, we can expect more 
advanced labeling workflows to be developed for 
exploring single-cell metabolomics.

2. Single-cell metabolomics in IEM

IEM can affect various organs throughout the body, 
and the clinical manifestations vary among patients, 

often lacking specificity (10). This makes it challenging 
to determine when to perform IEM testing and which 
specific laboratory tests to conduct due to the absence 
of characteristic signs and symptoms. However, the 
development of tandem mass spectrometry (MS) has 
significantly improved the detection capability for a 
wider range of diseases from a single blood spot (30). 
Previously, MS was used to test blood and urine samples, 
relying on the detection of metabolites that are indicative 
of specific diseases. If the results of metabolite testing 
suggest a potential disorder, Sanger or next-generation 
sequencing can be employed to confirm the diagnosis 
(31). 
 Metabolomics testing is crucial because it is 
often quicker than other methods, providing valuable 
information about disease severity and helping to 
elucidate the significance of mutations found in 
transcriptome sequencing (32). In recent years, numerous 
methods of analysis have been improved to enable 
single-cell level analysis, basing on inductively coupled 
plasma mass spectrometry (ICP-MS) (33). The short 
dwell time of cells in single-cell ICP-MS, which lasts 
only milliseconds, allows for precise measurement of 
single-cell metals (34,35) (Figure 1). Single-cell ICP-MS 
has become increasingly important in studying the metal-
related properties of cells and its role in investigating cell 
metal-drug penetration in drug research (36).
 In addition to single-cell ICP-MS, another valuable 
concept in sample introduction is the plotting of single 
cells on a flat surface, which facilitates qualitative and 
quantitative analysis at the single-cell and sub-cellular 
levels (37). With advancements in high sensitivity and 
spatial-temporal resolution imaging, researchers now 
have the ability to conduct detailed qualitative and 
quantitative analyses at these specific levels (37,38). 
Combination of high-resolution imaging of Laser 
Ablation Inductively Coupled Plasma Mass Spectrometry 
(LA-ICP-MS) and single-cell technology prompted  
new generations of agents based on metals in precision 
medicine (39,40).
 Leigh syndrome (LS) is a rare and devastating 
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Figure 1. The work flow of single cell sequencing technology 
combined with Inductively Coupled Plasma Mass Spectrometry 
(ICP-MS) technology.



www.irdrjournal.com

Intractable & Rare Diseases Research. 2024; 13(2):99-103. 101

metabolomics techniques. The findings of this study 
revealed the crucial role of JAK2/STAT3 signaling 
in IBC resistance and identified potential biomarkers 
and therapeutic targets for IBC (48). These results 
demonstrate the potential of single-cell metabolomics in 
unraveling the metabolic characteristics and underlying 
mechanisms of IBC, providing valuable insights for the 
development of personalized treatment strategies and 
improving patient outcomes.

4. The future feasible application of new single-cell 
metabolomics technologies in RDs

In a recent study, a novel microfluidic device using 
surfacing enhanced Raman spectroscopy (SERS) was 
reported. This device enables the dynamic screening of 
single circulating tumor cells (CTCs), thereby providing 
valuable insights into the differential expression of 
multiple protein biomarkers in response to therapy (51). 
This automated detection technology holds immense 
clinical significance in the diagnosis and therapeutic 
efficacy monitoring of RDs. By enabling the detection 
and analysis of single CTCs, it offers a powerful tool 
for understanding disease heterogeneity from the single-
cell perspective. This advancement has the potential 
to significantly improve our understanding of RDs 
and aid in the development of personalized treatment 
strategies. The integration of microfluidics and SERS in 
this device provides a practical and efficient method for 
screening and analyzing single cells, paving the way for 
future advancements in the field of single-cell analysis, 
especially in RDs researches.

5. Conclusion

Metabolomics plays a crucial role in systems biology 
and the study of various diseases. It combines emerging 
analytical tools with bioinformatics methods to study 
the role, abundance, content, downstream pathways and 
distribution of metabolic molecules in organisms. This 

early mitochondrial disease which primarily infringes 
infants and young children. It is considered one of 
the most severe mitochondrial diseases in children, 
which belong to the largest class of IEM (41). The 
prevalence of LS is estimated to be around 1 in 36,000 
newborns (42). Unfortunately, the limited number of 
patients and the lack of validated disease models have 
hindered the exploration of potential mechanisms of LS 
neuronal pathology (43). The scarcity of treatments and 
medications for LS results in a high mortality rate, with 
many patients not surviving past three years of age (44). 
In an effort to shed light on LS pathology and explore 
potential therapeutic strategies, a study utilized patient-
derived induced pluripotent stem cells and CRISPR/
Cas9 engineering to develop workable human LS model. 
By integrating single-cell multi-omics analysis, the 
study uncovered abnormal metabolic states in neurons 
derived from mutant nerve cultures and brain organoids. 
It was discovered that metabolic defects caused by 
mutations in the SURF1 gene, a key gene in LS, disrupt 
the ability of differentiated cells to maintain proliferative 
and glycolytic states, leading to impaired neuronal 
morphogenesis and maturation. Single-cell metabolomics 
data played a crucial role in revealing the importance 
of metabolic programming in LS (45). As technology 
continues to advance and its application expands, single-
cell metabolomics holds promise for exploring various 
diseases (Figure 2).

3. Single-cell metabolomics in other metabolism-
related RDs

Inflammatory breast cancer (IBC) is a rare and aggressive 
form of breast cancer, which accounts for 1% to 5% 
of breast cancer cases and is associated with a higher 
death rate of 8% to 10% (46). A study investigating 
metabolic heterogeneity in IBC found elevated levels 
of N-acetylaspartic acid, a major metabolite (47). This 
analysis was conducted using clinical IBC samples and 
IBC cell line models, and it incorporated single-cell 

Figure 2: The use of single-cell metabolomics in rare diseases.
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approach has proven to be valuable in understanding 
the mechanism of action and facilitating the diagnosis, 
including rare diseases (RDs). Single-cell metabolomics 
is an emerging field that focuses on analyzing the 
metabolome of individual cells to gain greater insights 
into cellular heterogeneity and disease processes in RDs. 
It has the potential to significantly enhance the ability to 
study the single-cell metabolome of RDs.
 Integrating cellular omics, such as transcriptomics, 
peptidomics, and proteomics, is an important current goal 
in single-cell metabolomics research. By utilizing both 
single-cell transcriptome and metabolome measurements, 
researchers can assess the fit of disease models and 
identify models that closely resemble the patient’s 
condition. This integration provides valuable insights 
into the details of gene transcription, translation, protein 
modifications, and metabolite interactions, enabling 
a better understanding of cell phenotype and fate. 
Overall, single-cell metabolomics is a rapidly evolving 
field which holds great promise for mastering RD-
related knowledge, improving diagnostics and treatment 
strategies in the future.
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